

NSF's National Solar Observatory

with Science at Eclipses and

Kevin Reardon

kreardon@nso.edu

Scientific efforts enhance public's eclipse appreciation

(Modern) Unique Opportunities for Science

Observing Advantages

- Low scattered light
- View of inner corona
- High time cadence
- Extended duration (e.g. CATE2024)

What Can We Measure

- Temperatures
- Densities
- Magnetic Structures
- Waves or Changes

Most Powerful Tool - Spectroscopy!

Different Types of Spectroscopyx

Filter Spectroscopy

Grating Spectroscopy

Habbal et al., 2010, ApJ, **708**

Ding and Habbal, 2017, ApJL, 842

Spectroscopy outside of Eclipses – DKIST Science with eclipse

- DKIST is a four-meter, off-axis, solar telescope on Haleakāla, Hawai'i
- Can function as a coronagraph observes the corona outside of eclipses
- Maps densities & temperatures of ions \rightarrow comparisons with eclipse electron corona
- DKIST can also measure *coronal magnetic fields*

Non-Eclipsed Observations

Observatories outside of the path of totality can observe the Sun at the same time and derive important, complementary information

For 2023 and 2024 eclipses:

- Solar Dynamics Observatory
- IRIS
- Very Large Array
- Extended Owens Valley SolarArray
- Big Bear Solar Observatory
- Dunn Solar Telescope (NMSU)
- COMP
- Solar Orbiter
- Parker Solar Probe
 in quadrature!

Spacecraft quadrature

spacecraft positions on 08 April 2024

Effects on Earth's Atmosphere

Supersonic passage of shadow (a temperature perturbation) can create *Ionospheric Disturbances*,

akin to a bow wave

Zhang et al., 2017